Ecological Renovation

Dr. Kim D. Coder Professor of Tree Biology & Health Care

Warnell School of Forestry & Natural Resources University of Georgia Athens, GA USA

WHAT IS WORST SITE IN YOUR COMMUNITY?

CAN IT BE
MANAGED TO
RECOVER
VALUES /
BENEFITS ?

RENOVATE!

RESTORATION

(bring back to previous)

VS.

RENOVATION

(bring up to usable)

UNDERSTANDINGS

6 LIFE LESSONS

STEPS FOR CHANGE

FREE PUB.

Coder, Kim D. 2016.

Ecological Renovation In Communities

(revised).
Warnell School of Forestry & Natural Resources,
University of Georgia.
Outreach Publication #44.
Pp.17.

<u>Understandings</u>

Connections Concentration Collapse **EMUs & Ecoplex** Assessment Renovation

LESSON 1: CONNECTIONS

fastenersfor parts

velocity / acceleration

- rate of change

IT'S ALL ABOUT

CONNECTIONS

(ECO-CONNECTIONS)

Places We Live, Play, Work

Connected To Natural Life Support Processes

But We Cleanse

Sterilize

Environment

Connections with other life & sustaining processes

Diminish

Ecological Processes

Become Strained Damaged

ADDICTED

To Hardscape Systems

SEPARATE

Us From Ecological Support

Urban / Suburban Population's Perceptions

individual parts of ecosystem

nature walks, environmental education, ecological trainings, ordinances

natural systems many parts in bag called "environment"

Community Natural Resource Management

important ecological functions NOT parts nor bag

Connections Between Parts must be inventoried, measured & affected by management

Connections Between Parts determine future values, changes & management needs

state of something

rate of change

WHEN a State is Measured

Measures Represent The Past

always managing resources a few steps behind reality

(Always playing catch-up)

Communities must deal with dynamic & chaotic change

change is only certain thing in ecological system

enance powers system, NOT static parts or things

LESSON 2: CONCENTRATION

consolidation of energy / resource web

- shortening connections

- main-lining community inputs

Our Lives Bound Tightly To Accessible Essential Resources

Interconnections With Ecological Framework

supplanted by artificial resource concentration & delivery systems

Resources Concentrated & Delivered Into Community Infrastructures

ecological connection lines woven, wrapped, & bundled together

(supporting cloth or cables)

Loss Equation R = 1 / I²

Resource Concentration (R)

Inter-Connections
(I)

Loss Equation

Resource Concentration 2X in our support

Interconnections with ecosystems diminish by 4X

R = 1/1

Communities Isolated From Ecosystem Functions by fewer but more important resource concentration nes

Fewer, Concentrated, Connections prone to chaotic failures & system disruptions

(catastrophic results!)

Few Biological Units Survive & Thrive Under These Conditions

(except humans, pets & pests)

geometry & engineering of resource concentration structures in communities

limit extent, access, & potential of ecological islands

ecological islands

mired & isolated within a dead, dry, hot, hardscape matrix

few life inputs

ecological corridors

height, width, length, diversity, & soil surface

limited resources &

large resistance to transmission

easily blocked

Livability In Communities Come At GREAT Ecological Costs & Potential Liability Problems

Community Development

- <u>shorten</u> ecological connections

- <u>hide</u> resource concentration infrastructures

- attain short-term reduction in human psychological stress & physical needs

Use Technology To Keep Ecological Systems Away From Equilibrium

(some will have quality of life)

LESSON 3: COLLAPSE

ecosystemvolume loss

- strained / dysfunctional

exhausted / declining

- system extinction

Ecosystems

Broken Into,
Used, Exhausted,
& Cast-off
(abuse / neglect)

like old worn-out clothes where simple cleaning or time in closet will not change remaining values

Ecosystem Productivity & Sustainability

depend upon maintenance of proper structure & function

Systems Declining & Exhausted From Long Or Overburdened Use

can NOT be made new again

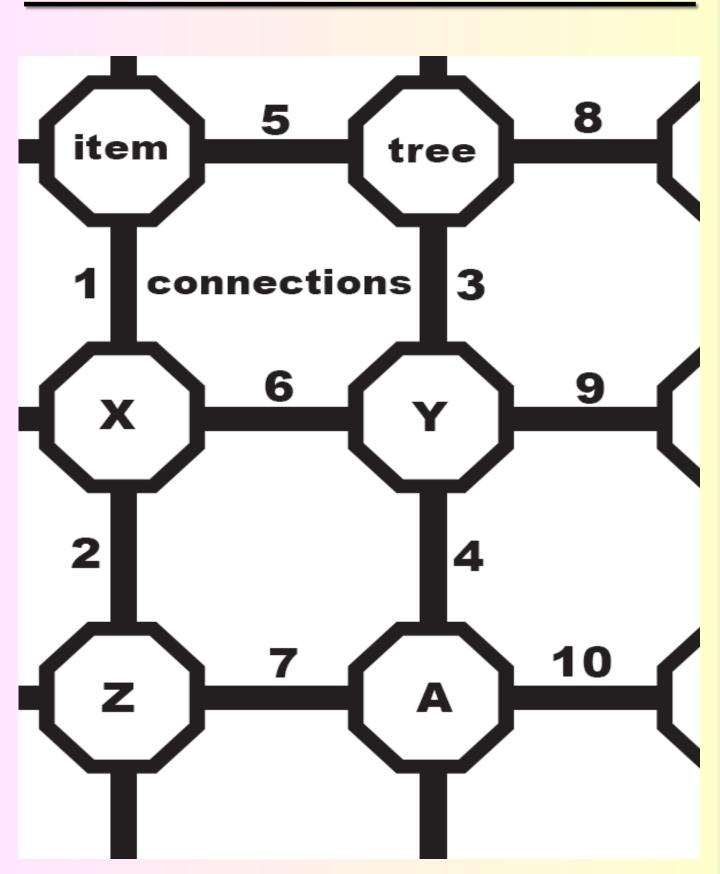
Renovation

- a restarting process -

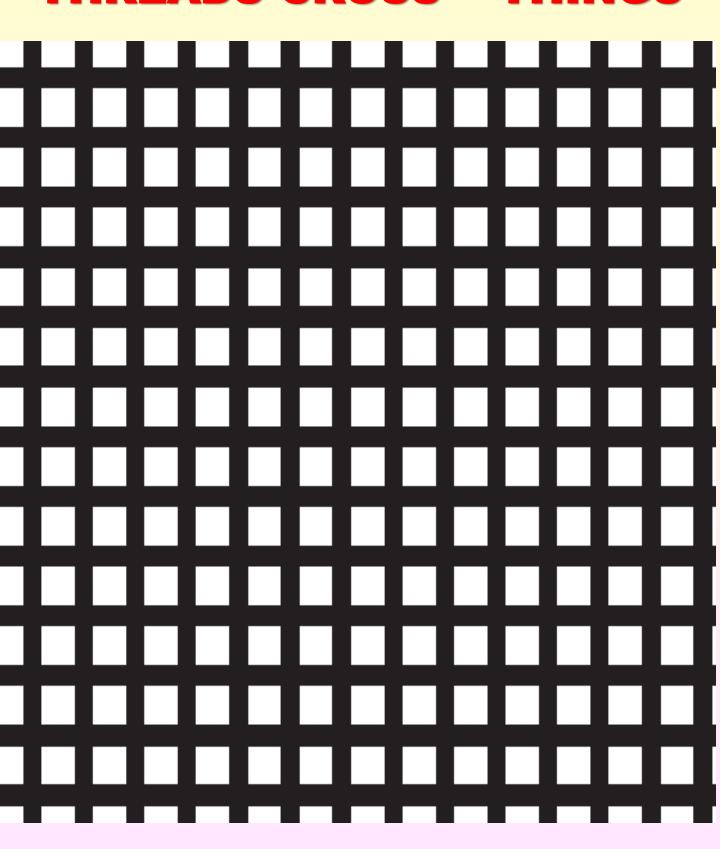
Concentrate On Causes Of Problems NOT Reacting to Symptoms

Many Current Reaction-Based Management Systems

prone to adversarial approaches to environment


informed consensus & proactive ecological investments is alternative

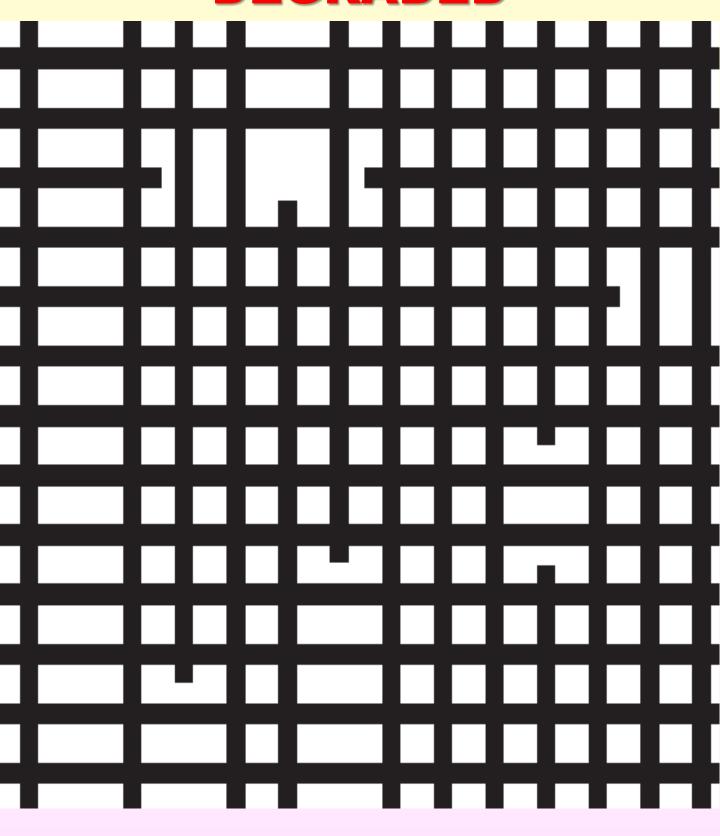
TEXTILE MODEL


2D vision of 4D structure

visualize ecological system declining, exhaustion, & becoming extinct

TEXTILE MODEL

THREADS = CONNECTIONS THREADS CROSS = THINGS

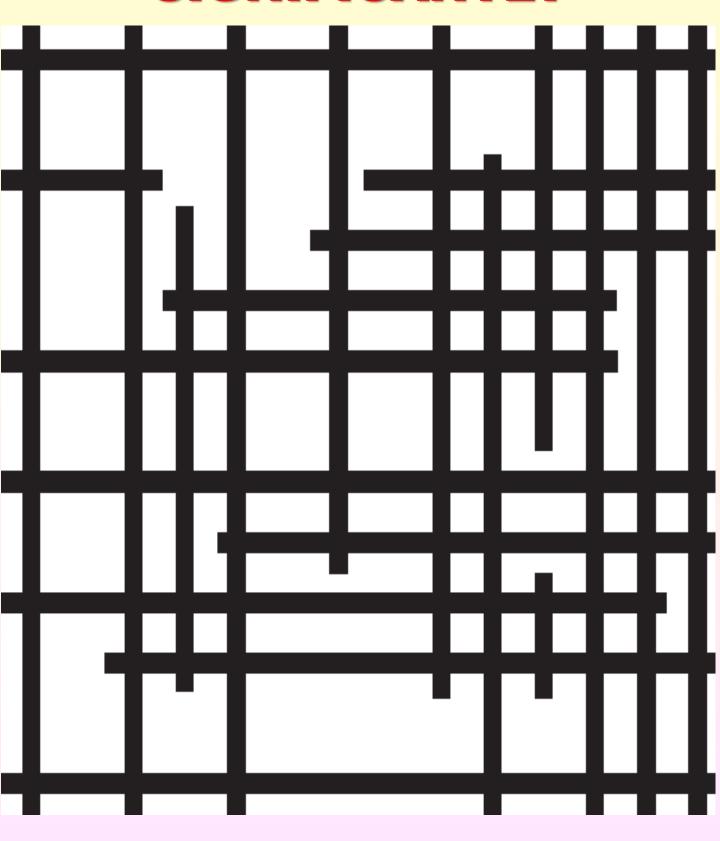


TEXTILE MODEL Most Threads Held Tight By Interconnections

Under Stress
Cloth
(both connections & things)
Stretched & Pulled

All Threads
Provide Strength

ECOSYSTEM SLIGHTLY DEGRADED



TEXTILE MODEL

Functions & Values Generated By Entire Cloth

remain nearly the same for some time

ECOSYSTEM DEGRADED SIGNIFICANTLY

TEXTILE MODEL

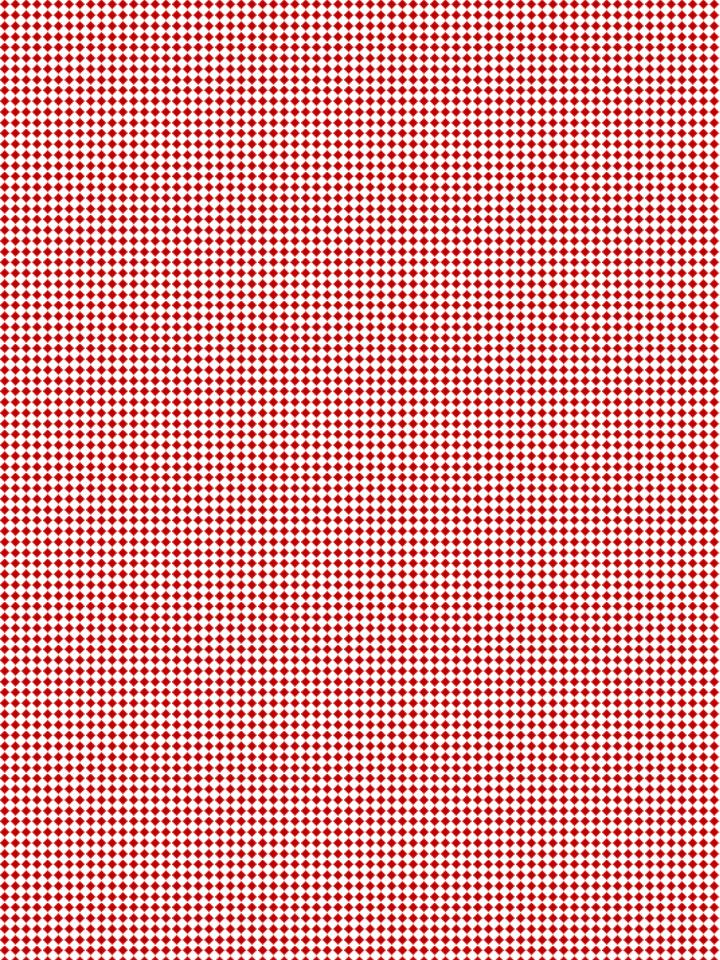
Change Becomes More Than Realignment & Reorganization

Change Brings
Loss of
Connections
& Connection
Points

Threads Broken & Pulled Out

lines of connections disrupted

whole cloth diminished

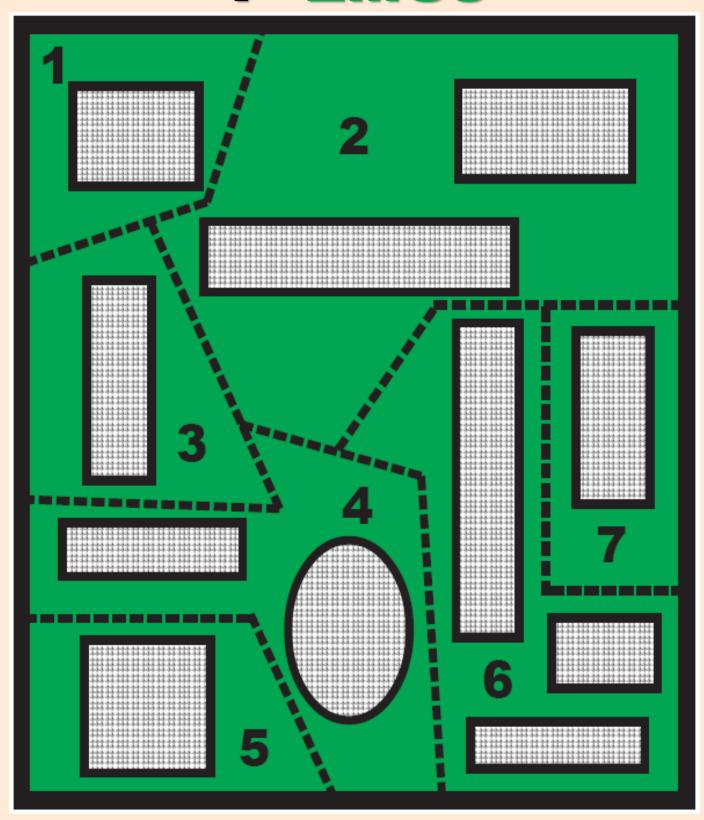

ECOSYSTEM EXHAUSTED & DESTROYED

ecological systems devolve with development pressure

pathway to decline & exhaustion different than reverse path to recovery

not <u>adding</u> interchangeable parts, but <u>adjusting</u> connectivity

LESSON 4: ECOLOGICAL MANAGEMENT UNITS (EMUs)


- edges, boundaries & size

-managed places

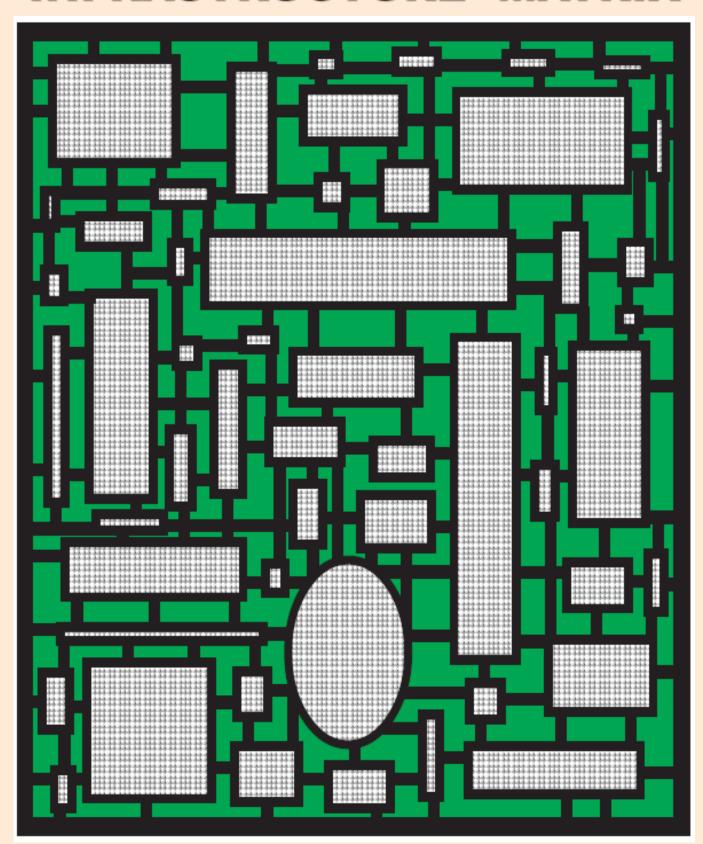
Ecological Management Units (EMUs)

comprise ECOPLEX

ECOPLEX WITH 7 EMUs

URBAN ECOPLEX

-multiple EMUs

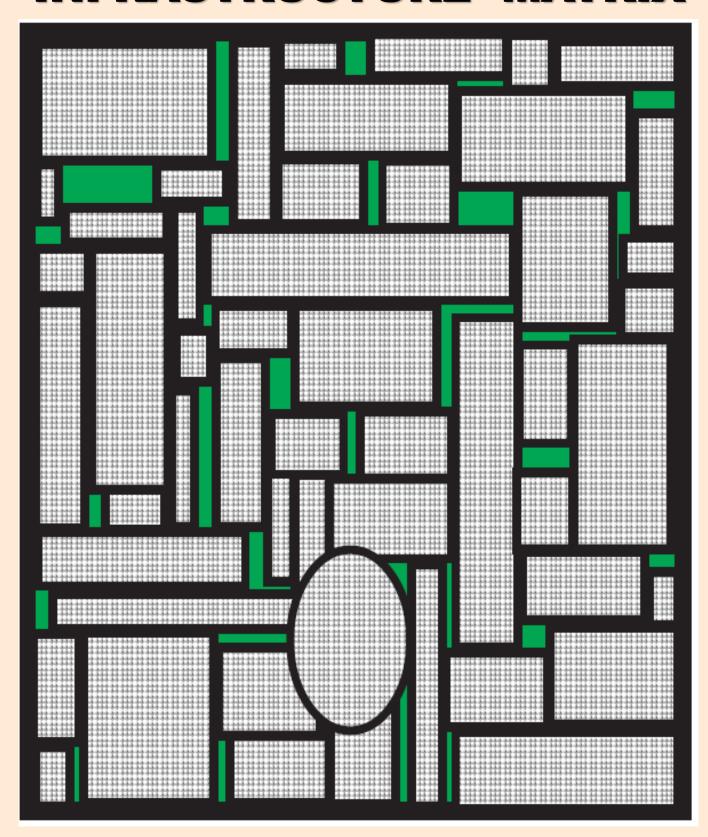

-defined features

ECOPLEX

= interwoven houses

human defined, area-limited, relatively structured, homogenous area of dynamic matter & energy interchanges between / among biological & non-biological components

ECOPLEX -- LIGHT INFRASTRUCTURE MATRIX


renovation

every site (EMU) different

social context ecological context damage level

ECOPLEX

INFRASTRUCTURE MATRIX

CHANGE

myriad of interconnected & interacting processes

appreciate each individual process & its limits or boundaries

LESSON 5: ASSESSMENT

counting,measuring,observing

 what is present / what is missing

- change NOT state

Damaged / Exhausted EMU / Ecoplex Assessment Outline

- 1) Definition, delineation & representation.
- 2) Size appreciation is it big enough?
- 3) Spatial (Space) appreciation interconnectivity / fragmentation / integrity.

4) Diversity — genetic, species, habitats.

- 5) Time.
- 6) Disturbance type, intensity, & timing.

- 7) Cycles & Processes
 recovery of
 historic & low
 maintenance
 cycling systems.
- 8) Ecological fuel biological legacies.
- 9) Management dedication—
 resolve to accept change.

10) Principle means of renovating ecoplex:

A. Succession processes reinstitution

B. Disturbance regimes reinstitution

10C. <u>Genetic</u> <u>Resources</u> <u>Enrichment</u>

- 1. retrieve "key" organisms (native!)= trees, ground covers, fungi, arthropods, worms
- 2. move toward "modified" native systems

10D. <u>Site Resources</u> <u>Improvements</u>

- 1. organic matter (soil & litter)
- 2. soil exchange capacity
- 3. continued soil genesis & health (pore space conservation)
- 4. water availability
- 5. nitrogen availability (cycling)
- 6. light tuning (shade management & light extinction factors)

Ecoplex Assessment Checklist

10E. <u>Minimizing</u> Stress

- 1. contain / eliminate heavy metals & other damaging legacies
- 2. control pollution
- 3. control heat
- 4. control exotics
- 5. physically protect site from mechanical & chemical damage
- 6. control oxygen availability & water drainage trade-offs

ASSESSMENT

HOW WILL YOU CHANGE / MODIFY WHAT IS PRESENT!

MANAGEMENT

natural systems
messy, unkempt,
& chaotic -multiple endpoints,
same inputs

accept dynamic change & incomplete resource data in decision-making process

LESSON 6: RENOVATION ACTIVITIES

PROBLEMS & APPROPRIATE RESPONSE

-continuous change / modify response

-no "treat & wait" for response

-not one size fits all

Major Urban Ecological Problems

- #1) Hard surface increases
- #2) Decline in total ecologically active volume
- #3) Changes in past & current ecosystem functions / processes

Major Urban Ecological Problems

#1) Hard surface increases

more non-evaporative / non-infiltrating surfaces,
more concentrated water flows
higher water velocity flows / larger volumes
shorter water pulse rates
more erosion
less biologically available water
greater heat generation
wider fluctuations in heat / humidity

#2) Decline in total ecologically active volume

more surface area per volume (more edge effect)
more isolated islands / narrower corridors
greater distances across hardscapes
less open soil surfaces
smaller number of biologic energy capture systems
less eco-diversity / less connectively

#3) Changes in past & current ecosystem functions / processes

disruption & destruction of ecological processes large scale intense disturbances inadequate mitigation & renovation inadequate resources provided essential resources removed or destroyed

Appropriate Response

#1 Hard Surface Increase

develop more active evaporating surfaces
more canopy volume
more crown coverage
more low density organic mulching
more soil infiltration areas
more shade structures
more shading or blanketing of hard surfaces.

#2 Loss of Ecological Volume

develop more canopy coverage
correct soil limitations
more biologically active volume
larger areas of soil & organisms conserved
more readily usable organic materials on soils
help reconnect system components

#3 Loss of Ecosystem Functions

improve soil health
(aeration, organic matter, no erosion, etc.)
careful water conservation & use
develop more biological volume
(open soil surface areas, plant canopies,
more composted organic material covered
with low density organic mulch, etc.)
conserve & enrich ecological diversity
keep essential resources on-site

RENOVATION PROGRAM

-restart, accelerate or broaden ecological processes -enrich / maintain biological units -conserve life-essential resources

Checklist of Ecoplex Renovation Activities

Treatments

8

habitats

- minimize fragmenting
- assure strong connectivity
- generate wider, full height corridors & larger natural islands
- generate less edge
 effect & more
 ecological volume

- produce variable living tree densities (patches)
- develop multi-age classes
- cultivate multi-species (natives)
- advocate proper plantings & seedings
- facilitate general revegetation at all levels
- install maintenance program

organics

- leave organics,
 stumps, large woody
 debris, roots, slash,
 & leaves on-site
- leave snags & deadwood
- bring in composted organic matter under mulch blankets

soil / water

- protect / renovate wetlands & buffers
- protect / renovate streams (beds, banks, & cover)
 & buffers
- manage surface & ground water quality (control nutrient loads, heat, pollution)
- protect soil fertility& health
- prescribe soil biological enrichment

<u>stress</u> management

- develop "appropriate response use" of pesticides (minimize)
- use Plant Health Care principles
- maintain ecological health & structure
- maintain individual health & structure

survival

- manipulate disturbance (including pocket fires, patch clearing, & flooding)
- manage genetic
 diversity & genetic
 integrity (natives)

site control

- erosion control
- water runoff control
- fencing & access
- fire control & prescribed burning
- weed control / exotics control

ecologically literate management

- pick appropriate size,
 scale & time frames
- assure continued
 assessment &
 monitoring of
 resources and site
- develop & follow flexible management

Ecosystem Sustainability Test

- A. Viable native populations
- B. Biotic/abiotic interactions with normally distributed variation
- C. Facilitation of ecological processes
- D. Long periods of time (at least 3 human generations)
- E. Accommodate human use & occupancy

-- REMEMBER --

renovation is for individual quality of life & community sustainability / livability

NOT

museum-like preservation of resources

GLU-50/5

Active Management essential for community sustainability & livability

for any site -

a number of simple, low cost treatments can begin a renovation process

SO... BEGIN

WAITING KILLS SYSTEMS

treatments must be cost-effective for a given management plan

BUT

they must halt / reverse EMU & ecoplex decline & exhaustion

RENOVATION destination

JOURNEY
(utilizing ecological fundamentals)

KBBP RENOVATE ONI

plant, care, change