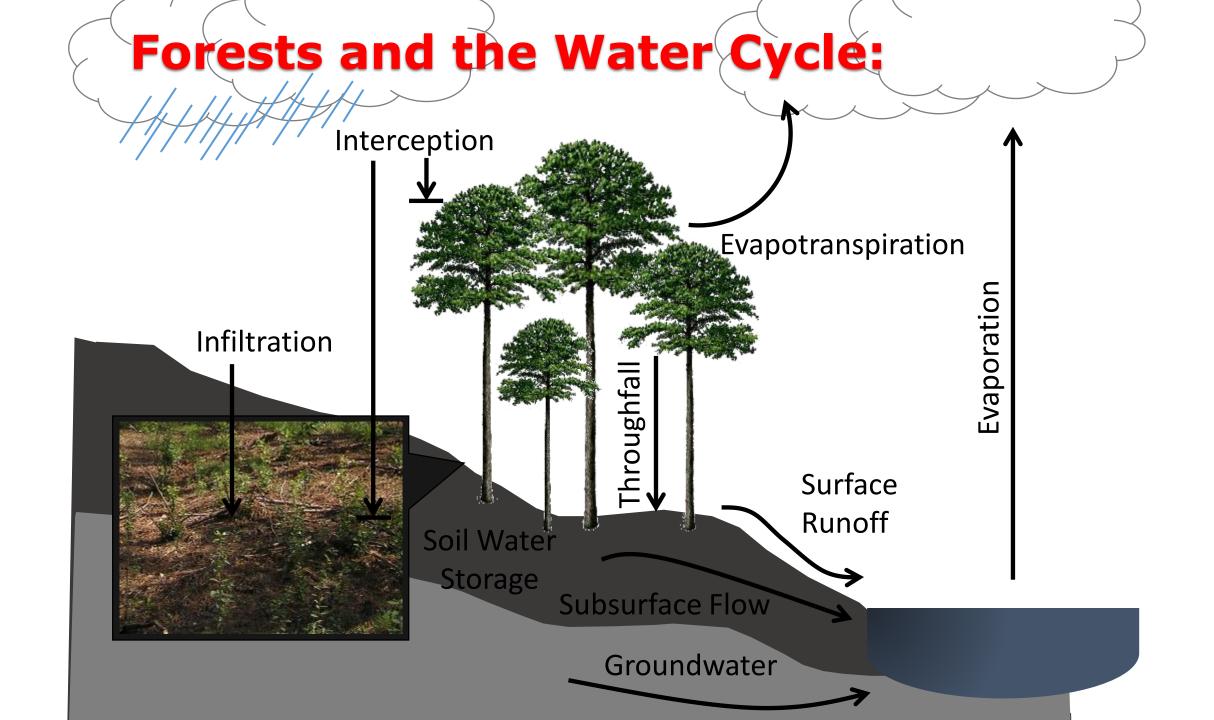
How Trees and Urban Forest Systems Affect Stormwater Runoff

Eric Kuehler Science Delivery/Technology Specialist USDA Forest Service <u>ekuehler@fs.fed.us</u>



Objectives

- Current research
 - Retention/detention
 - Rainfall intensity reduction
 - transpiration
- Co-benefits of urban trees
- UF management strategies to maximize stormwater benefits
- Using trees to meet stormwater credits

Typical Urban Development

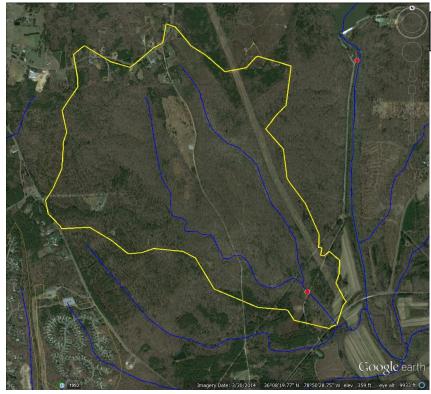

- Remove tree canopy cover
- Remove ground cover
 - Vegetative
 - Detritus (mulch)
- Remove permeable top soil
 - Leaving dense subsoil
- Disturb/compact/pave over remaining soil
- Grass sod over subsoil

Image courtesy of Google Earth

Research Basis for Forest Systems and Stormwater Mitigation

Forest – Flat River Tributary

2.95 km² Size 0.70 km²

99% Forest/Open Space 56%

1% Impervious 44%

Peak flow rate: 5.8 (mm/day) 76.6 UR > 13x

Storm flow volume: 7.1 (mm/day) 77.9 UR > 11x

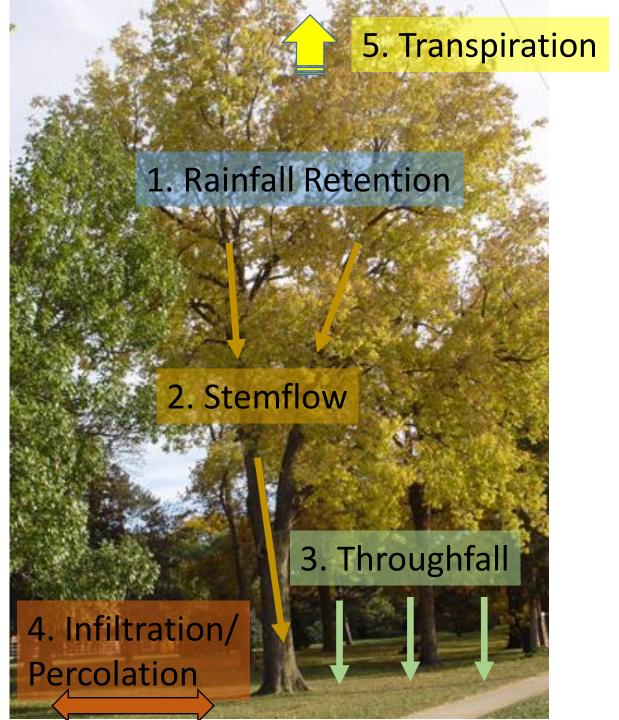
77% Mean ET 58%

Urban – Pigeon House Creek

Boggs & Sun (2011) Urbanization alters watershed hydrology in the Piedmont of North Carolina, Ecohydrology, 4, 256-264

Can Cities Be Designed to Mimic Forested Systems?

- Layered forest structure
 - Over-story
 - Mid-story
 - Groundcover (mulch or veg)
 - Where appropriate
- Provide more rooting volume
 - Permeable soils / macro-pores
- Store runoff belowground
 - GSI / Greenspace conservation
 - Rocks?

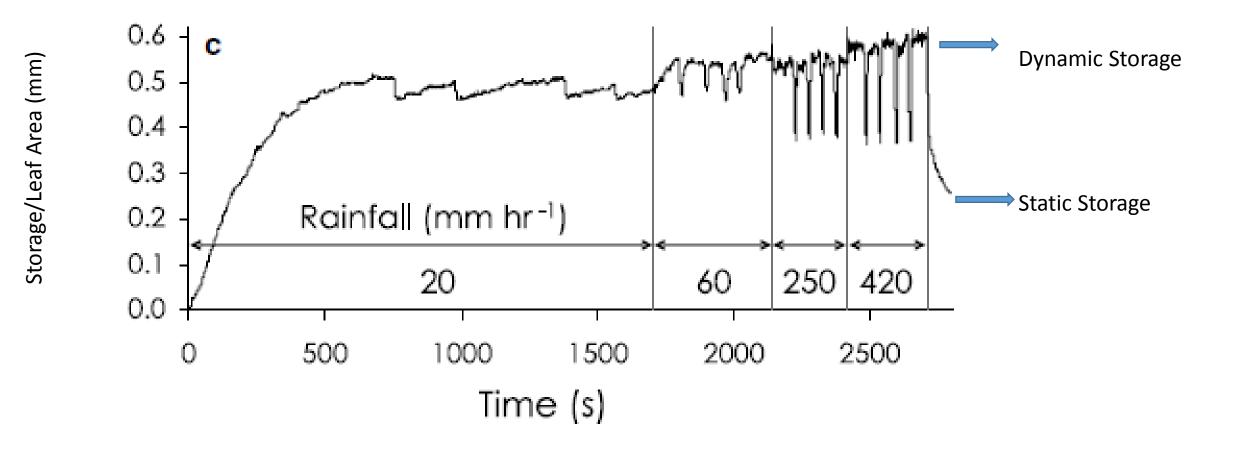


Various Ways Urban Forest Systems Impact Rainfall and Stormwater

- 1. Rainfall Retention
- 2. Stemflow
- 3. Throughfall
- 4. Infiltration/percolation
- 5. Transpiration

Tree Canopy Retains Rainfa

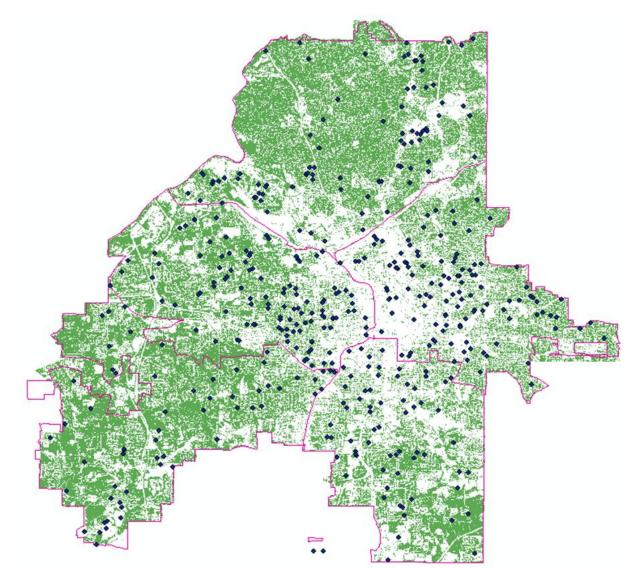
- ~20% annual retention under canopy
 - 14 61% range depending on region
 - Depends on volume and intensity
- Canopy holds first 2-4mm of rainfall
 - Xiao et al. (2000); Livesley et al. (2014)
 - 1 ac @ 25% cover = 71-143 ft³ / event
 - 531 1070 gallons
- More leaf area = more retention
 - Larger trees
 - Evergreen trees



Tree Canopy Retains Rainfal

- Leaf area drives rainfall retention
- Static storage (Keim et al., 2006)
 - Water held after rain event ends
 - ~0.2 mm per m² leaf area
- Dynamic storage
 - Temporary water storage during rain event
 - Broadleaf = 0.77 mm
 - Coniferous = 1.25 mm
 - Xiao and McPherson (2016)
- Large trees can have hundreds of m² of leaf area

Static vs. Dynamic Storage Keim et al. (2006)

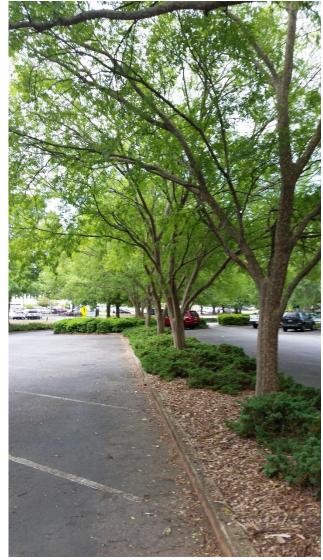

Tree Canopy Retains Rainfall

- Hackberry example
 - 14" DBH
 - 50' HT
 - 35' crown width
 - Leaf area ~ 7000 ft^2
- Static storage = ~34 gallons
 - @ 0.2mm/m²
- Dynamic storage = ~ 132 gallons
 - @ 0.77mm/m²

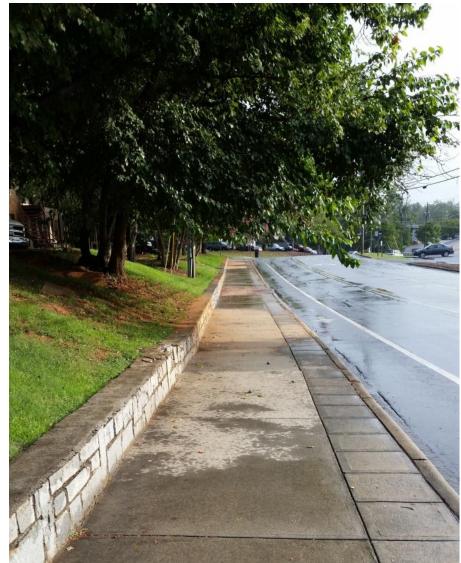
Tree Canopy Retains Rainfall

- Entire urban forest example
 - City of Atlanta
- i-Tree Eco project
 - 443 1/10th acre plots
 - Randomly located around city
 - 2013 meteorological data
- Estimated leaf area = 235 mi²
- Avoided runoff = 94.1 million ft³
 - 704 million gallons
 - 3.3% of annual rainfall

Stemflow


- Slows runoff rate
- Funnels stormwater to base of tree
- Encourages infiltration
- Leaf-on season
 - 3-8% of rain falling on tree canopy
 - Leaves encourage throughfall
- Leaf-off season
 - 9-15% of rain falling on canopy
 - Typical winter rainfall intensity less than summer intensity

Credit: City of Kamloops, BC, Canada


To Maximize Stemflow (and Minimize Runoff)

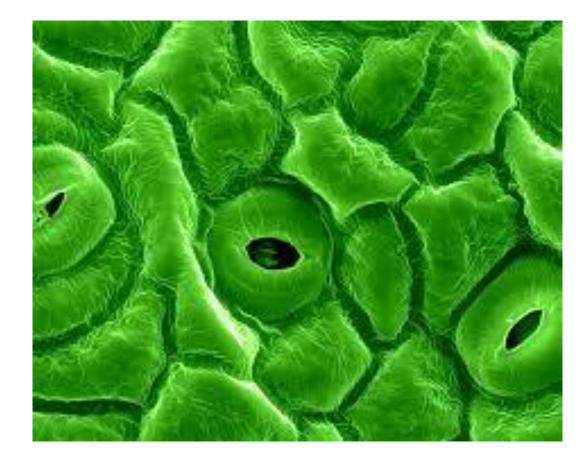
- Per Schooling & Carlyle-Moses (2015)
- Provide sufficient infiltration capacity at base of tree
- Select larger canopy trees
- Select smooth(er) bark trees
- Select trees with co-leaders or more acute branch angles
 - What are the trade-offs?
- Encourage canopy cover over impervious surfaces

Tree Canopy Temporarily Detains Rainfall

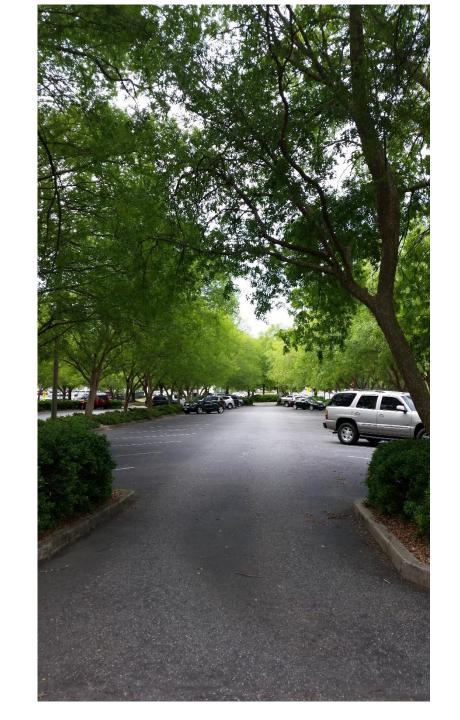
- Delayed throughfall via dynamic storage
 - Depends on storm intensity
 - Crown surface area
- From 10 min. to > 3 hours
 - Aston (1979) in Australia
 - Asadian and Weiler (2009) in Vancouver, BC
- Canopy cover increases lag time
 - Xiao et al (2000)
 - Keim (2003)
 - Livesley et al (2014)

Canopy Cover Reduces Rainfall Intensity

- 15%-21% reduction in deciduous forest
 - Trimble and Weitzman (1954)
- 21%-52% reduction in Oregon
 Keim and Skaugset (2003)
- May be greater for urban trees
- Canopy cover acts as volume control measure
 - Increases BMP efficiency?


Infiltration and Percolation

- Soils store, delay, and filter
- Urban soils typically compacted
- Tree roots penetrate compacted soil
- 69 354% greater water infiltration under tree canopy
 - Zadeh & Sepaskhah (2016)
- Infiltration rates increased by 800% in clay loam soils under canopy
- Root mass is credited with higher infiltration


Transpiration Allows More Storage in Soil

- Highly dependent on environmental factors and species
- ~1.5 mm/day/m² canopy cover
 - Chen et al. (2011)
 - Wang et al. (2012)
- $0.3 2.6 \text{ mm/day/m}^2$ leaf area
 - Kjelgren & Montague (1998)
 - Fair et al. (2012)
- 7000 ft² leaf area = 7 60 ft³/day
 - @ 0.3-2.6mm/m²/day
 - 52 446 gallons/day

Conclusion

- Tree canopy retains rainfall
 - ~20% annual rainfall under canopy
 - First 2-4 mm of rainfall
 - 0.2 mm per m² of leaf area
- Stemflow
 - Directs up to 15% of interception to soil
- Canopy cover reduces rainfall intensity
 - Deciduous canopy 15 21%
 - Coniferous canopy 21 52%
- Trees increase infiltration under canopy
 - Up to 350%
- Trees transpire 50 to 450 gallons/day
 - Species and microclimate dependent

Co-benefits of Urban Forest Systems (Triple Bottom Line)

• Economic

- Energy conservation
 - **↑** CC 10%, **↓** T 1.2° C, **↓** e⁻ use ~15%
 - Huang et al. 1987
- Increased property value (~5%)
- Social
 - Positive relationship with human health
 - http://www.naturewithin.info/urban.html
- Environmental
 - Air pollution removal/avoidance
 - i-Tree tools to quantify
 - <u>www.itreetools.org</u>

Urban Forest Management Strategies to Maximize Stormwater Mitigation

- Layered structure mimics forest systems (reduce/delay runoff)
 - Over story canopy
 - Dominant species
 - Mid-story canopy
 - Shade tolerant species
 - Ground cover (veg/mulch)
- Provide adequate rooting volume for growth and health
 - Suspended pavement systems
 - Gravel under pavement?

Using Trees to Meet Stormwater Credit

Portland, OR

2004 Stormwater Management Manual

- Subtract Impervious Cover under trees within 25 feet of impervious cover that meets certain criteria
- Existing Tree = 50% of Existing Canopy, New Trees = 100 to 200 ft² of impervious cover

Indianapolis, IN

2007 Stormwater Green Infrastructure Supplemental Document

- Credits for new or exiting tree canopy within 20 feet of impervious surfaces.
- 1 tree= 100 ft² of Impervious Cover

Pine Lake, GA 2003 Ordinance

- Trees count towards site runoff requirements
- Trees = 10 to 20 gallons/in DBH

Minnesota Volume, TSS, Phosphorus Credit

- Based on interception, evaporation, and infiltration
- Example : Mature Red Maple with infiltration area= 340 cf

Philadelphia, PA 2011 Stormwater Manual

• Reduction in impervious area

Washington, DC 2013 Guidebook

- Trees receive retention value
- Preserved Trees = 20ft^{3;} New Trees = 10 ft³

How Trees and Urban Forest Systems Really Affect Stormwater Runoff

Eric Kuehler Science Delivery/Technology Specialist USDA Forest Service <u>ekuehler@fs.fed.us</u>

